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Despite major advances in environmental security research, non-experimental observations typically 

rely on methods that retrieve or validate specific linkages, rather than uncovering broader causal 
mechanisms underlying environmentally driven armed conflict. This article demonstrates how recent 
advances in causal methodology can be applied to more comprehensively retrieve and validate 

a network of such linkages. By retrieving a more integrated causal structure of pathways from 

environmental variables to conflict activity, we offer a novel methodological perspective on how 
causal relationships among environmental, demographic, agricultural and armed conflict variables 
can be identified, and how associated causal hypotheses can be tested. To uncover these pathways 
and infer causal effects of natural conditions on conflict activity, we apply this methodology to 
non-experimental observations of armed conflict across Iraqi subdistricts. Our findings support the 
hypotheses that latent energy and soil moisture indirectly cause conflict activity. While confirming that 
armed conflict is positively mediated by population density, the results do not support the hypothesis 
that wheat production negatively mediates conflict. Finally, we discuss our methodological approach, 
clarify its limitations, propose future research directions, and consider the implications for evidence-

based policy interventions.

Since the founding of the Correlates of War project in 19631, armed con�ict research has bene�ted from advances 
in the scienti�c method, including data collection2,3, modeling4 and prediction5. However, an outbreak of armed 
con�ict remains di�cult to predict, and any attempt to do so requires an explanation of its underlying causes5,6. 
�ese challenges have led many scholars in environmental security research to refrain from o�ering causal 
explanations altogether. For instance, one of the �eld’s founders, Homer Dixon, explicitly avoided “entangling 
himself in the metaphysical debate about the relative importance of causes of naturally caused armed con�ict”7.

Ever since, a host of studies have attempted to overcome many of these limitations, by using econometric, 
statistical, and qualitative causal inference methods for observational data8–10. Since the 1990s,  pathways 
that causally trace armed con�ict to environmental variables have become increasingly rich and diverse11–16. 
Observationally identi�ed causes linking con�ict, agriculture, and weather include rapacity dynamics17–19 
intensifying enmities along political fracture lines20,21, and food prices22,23 among others.

Until now, however, methods have only been able to empirically con�rm less exhaustive causal mechanisms 
that link con�ict to environmental factors16,24,25. To estimate causal e�ects, randomized controlled trials (RCTs) 
have typically been regarded as the gold standard, as random assignment of units to treatment or control 
eliminates confounding between assignment and outcome. Since such rigorous experimentation does not apply 
to armed con�ict, more exhaustive causal mechanisms are still in search of appropriate methodology16,25. �is 
leaves a signi�cant gap in the literature not only for scholarly purposes but also for policy-making, as policy 
interventions can only e�ectively address causes once they are identi�ed and estimated.

In addressing this gap, our article outlines a methodology for inferring causality from non-experimental 
observations of armed con�ict. We leverage recent advances in the theory and methods of causality26. In 
particular, Pearl’s contributions—such as causal diagrams, causal interventions, and a formalized approach 
to causal reasoning—provide a robust framework for testing commonly hypothesized causal pathways using 
observational data. Our cross-sectional dataset consists of 294 non-experimental observations, one for each 
subdistrict in Iraq (Arabic: ةيحان nāḥiya), which serves as our unit of analysis. Our outcome variable is the 
count of con�ict events, with each observation additionally described by explanatory variables, including 
demographics, vital resources, the environment, and weather. �ese observations were sampled from several 
geo-coded maps2,27–32. From these data, we derived an empirical causal mechanism outlining linkages between 
environmental variables and con�ict. Represented as a causal graph, the mechanism illustrates causal pathways 
from environmental variables to armed con�ict outcomes. �e mechanism is characterized by the causal e�ects 
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of these variables on the count of con�ict events, accounting for causal spillover wherever these e�ects could 
be identi�ed and estimated. Several �ndings con�rm that causal e�ects on con�ict events can be traced back to 
their natural causes.

While we refrain from making strong claims about having established a robust causal mechanism, our study 
highlights exogenous dynamics that must be considered in environmental security research. More importantly, 
by demonstrating how advances in causal methodology can be leveraged in armed con�ict research with non-
experimental observations, we show how empirical causal structures, the identi�cation of causal paths, and the 
estimation of causal e�ects can inform environmental security research. �ird, we corroborate the existence of 
cause-and-e�ect relationships between environmental variables and con�ict. Finally, we illustrate how causal 
frameworks can be used to inform more e�ective policy interventions.

Our study adapts causal methodology, including the retrieval of empirical causal structures and the 
estimation of causal e�ects under spillover conditions, to test existing hypotheses in armed con�ict research 
using observational data—a novel approach in this domain. Furthermore, it applies these frameworks to 
environmental con�ict research, o�ering new insights and paving the way for more e�ective policy interventions.

�e article is structured as follows: Section  2 demarcates the research gap in the existing environmental 
security and armed con�ict literature. Section  3 presents the hypotheses, and Section  4 outlines the results. 
Section  5 discusses key contributions, research limitations, future directions, practical implications, and 
conclusions. Finally, Section 6 describes the study’s data and methods.

Related studies
Armed con�ict prediction is generally di�cult6,33,34. It is particularly challenging in localities where armed 
con�ict is expected to occur for the �rst time35. E�orts to overcome the challenges and pitfalls of armed con�ict 
prediction have occasionally grounded prediction in environmental variables36. A speci�c line of environmental 
security research has focused on the causality of armed con�ict. Studies have investigated both the connections 
tracing the causes of violent, organized con�ict to scarce resources11,16,37 and the causal typologies of 
environmental con�ict11,14,15.

Some studies have focused on and explicated speci�c pathways using econometric, statistical, and qualitative 
causal inference methods for observational data. An overview of these studies can be found in, e.g., Martin-
Shields and Stojetz8; Von Uexkull and Buhaug9; Ide et al.10. Researchers have identi�ed numerous causes 
linking con�ict, agriculture, and the environment using observational data, including rapacity dynamics17–19, 
intensifying enmities along political fracture lines20,21, and food prices22,23, among others. Causes of con�ict 
have been attributed to environmental stress and scarcity12,13,37, the allocation and management of scarce water 
resources38–40, and shocks in food production41.

Some high-pro�le studies such as Hsiang, Burke, and Miguel24 have attracted sharp criticism41 for capturing 
publication bias and making questionable omissions from data, rather than focusing on actual dynamics. �e 
critique demonstrated that the inferred impact of environmental conditions on con�ict is contingent upon the 
context, the type of violence, the involved actors, and the methodology itself. By extension, broad claims about 
causal pathways linking the environment to con�ict are,  at best, weak and inconclusive16,25,42.

Hence, while domain knowledge strongly suggests that environmental conditions contribute to organized 
armed con�ict within countries, more comprehensive causal mechanisms linking these conditions to con�ict 
remain less understood. Understanding these mechanisms in greater detail will likely require methodological 
advances to retrieve them from empirical data43. �is is the research gap that our study aims to address.

Theory and hypotheses
�is section derives our causal hypotheses from relevant �ndings. Adapted from Sakaguchi, Varughese, 
and Auld16, Fig. 1 outlines the basic mechanism of causal linkages between the environment and con�ict,  a 
mechanism that has been extensively hypothesized in environmental security literature. �ese hypothetical 
linkages are rooted in environmental causes. �e �gure distinguishes between direct and indirect linkages (i.e., 
paths A and B, respectively). �e indirect linkages are based on the idea that the scarcity of vital resources—also 
referred to as environmental scarcity—hypothetically mediates the relationship between environmental causes 
and armed con�ict outcomes. �is is the rationale behind our hypotheses.

Long-term weather patterns have been argued to directly cause armed con�ict24,44–47. �e direct link between 
long-term weather patterns and armed con�ict can be seen in how populations respond to environmental 
changes. For instance, environmental disruptions a�ecting livelihoods can prompt community mobilization and 
lead armed groups to intervene, anticipating adverse outcomes. �ese actions may lead to direct causal e�ects 
of environmental processes on armed con�ict. Such e�ects can originate from factors such as soil moisture, 
temperature, or the way di�erent physical environments absorb or release accumulated heat or energy (i.e., latent 
heat or energy)16,24. �erefore, we hypothesize that changes in soil moisture, temperature, and latent energy 
directly cause changes in armed con�ict activity (H1).

• H1a: An increase in latent energy in the form of heat directly causes an increase in armed con�ict activity.
• H1b: An increase in skin temperature directly causes an increase in armed con�ict activity.
• H1c: An increase in soil moisture directly causes a decrease in armed con�ict activity.

Further, environmental processes have been argued to indirectly cause armed con�ict16,48,49. Causal mediation 
of environmental e�ects on armed con�ict primarily concernsenvironmental scarcity7,12,17,37. Environmental 
scarcity has been proposed as a mediator of environmental e�ects on armed con�ict7,16. While we elaborate 
on causal mediation more speci�cally below, we can already hypothesize that the environmental processes 
indirectly cause armed con�ict.
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• H2a: An increase in latent energy indirectly causes an increase in armed con�ict activity.
• H2b: An increase in skin temperature indirectly causes an increase in armed con�ict activity.
• H2c: An increase in soil moisture indirectly causes a decrease in armed con�ict activity.

To add speci�city to the indirect causal paths, causal mediation depends on speci�c causal conditions. 
Agricultural and pastoral conditions have been argued to shape social response to long-term weather patterns 
that induce migration50. Additionally, degradation and deserti�cation of arable land, as well as the availability 
of water for agriculture, have been argued to mediate the environmental e�ects on violent con�ict10,51,52. Wheat 
production has been shown to mediate the causal e�ects of temperature on the emergence of actual violence19. 
Since wheat is one of Iraq’s key crops53, we hypothesize that the environmental e�ects are also mediated by the 
production of agricultural resources, speci�cally wheat production.

• H3a: Given the indirect paths from the environmental processes to armed con�ict activity, wheat production 
causally mediates the e�ects of these processes on armed con�ict activity, by further decreasing armed con-
�ict activity.

In line with the previous reasoning, since the association between con�ict activity and factors such as population 
size, growth, density, or migration has already been established54–56, these variables may also naturally mediate 
the e�ects of the environmental causes on armed con�ict outcomes. Speci�cally, the scarcity of vital resources 
matters more to denser populations than to less dense ones48,57. Intuitively, a denser population is more likely 
to cope with and mitigate tensions less e�ectively than a less dense population. Everything else being equal, 
the denser population is, therefore, more likely to succumb to organized violence caused by environmental 
processes. �us, our next hypothesis, H3b, aligns with this reasoning.

• H3b: Given the indirect pathways from the environmental processes to armed con�ict activity, population 
density causally mediates these e�ects by further increasing armed con�ict activity.

With these hypotheses, we can construct the entire hypothetical causal structure of linkages between environment 
and con�ict, as shown in Fig. 2. As depicted in the �gure, grounded in the environmental processes, the scarcity 
of vital resources exposes population to existential stress. Both population density and the scarcity of agricultural 
resources aggravate these e�ects.

Results
Empirical causal structure
In the theory section, we proposed a hypothetical causal structure for the linkages between environment and 
con�ict. Figure 3 presents the causal structure that we empirically retrieved from the available non-experimental 
observations.

Although somewhat less expressive, the empirical causal structure largely corresponds to the hypothetical 
one in Fig. 2. �e con�ict nodes are clustered together, with the only node having only incoming edges being 
the count of con�ict events. Additionally, the structure is rooted in the environmental processes. Apart from the 
direct causal path from the temperature node to battle events, all other paths from the environmental processes 
to con�ict events are indirect.

Because the population density,  skin temperature, and wheat production nodes have the highest number 
of incoming and outgoing edges, these nodes are pivotal to the connectedness of empirical causal structure. 

Fig. 1. Hypothesized causal pathways linking the environment to con�ict.
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Fig. 3. �e empirical causal structure retrieved from the aggregated data.

 

Fig. 2. All the hypotheses combined: �e hypothetical causal structure.

 

Scientific Reports |        (2025) 15:16198 4| https://doi.org/10.1038/s41598-025-90767-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


�is supports the causal mediation of environmental processes on con�ict outcomes. In fact, the absence of 
population density, wheat production, and skin temperature would signi�cantly disconnect the environmental 
causes from these outcomes. Rather than accepting this evidence as conclusive, we further use the empirical 
structure to conduct hypothesis testing.

Causal hypotheses
�e empirical causal structure can assist in validating the causal hypotheses of naturally caused armed con�ict. 
Using this structure, we �tted a spatially explicit structural equation model (SESEM) and formulated and 
estimated the causal e�ects of our explanatory variables on the count of con�ict events.

�e SESEM model demonstrated acceptable performance, with the Comparative Fit Index (CFI) exceeding 
0.90 and the Standardized Root Mean Square Residual (SRMR) falling below 0.08 across nearly all spatial 
distances58. �ese values indicate an acceptable model �t, highlighting the model’s e�ectiveness in capturing the 
underlying data structure. While the Root Mean Square Error of Approximation (RMSEA) occasionally exceeded 
0.10, suggesting room for improvement, this is likely due to the limited number of available observations.

For each causal estimate, a hypothesis test was conducted to determine whether the estimate should be 
attributed to random error. Table 1 lists the causal estimates, the standard errors, and statistical signi�cance.

Our �rst set of hypotheses posits that the environmental processes directly cause armed con�ict outcomes. 
Speci�cally, changes in latent energy (H1a), skin temperature (H1b), and soil moisture (H1c) were hypothesized 
to directly a�ect the count of con�ict events. Among these, only skin temperature shows a direct causal path to 
con�ict events through battle events. �e estimates, standard errors, and statistical signi�cance for each isolated 
path from skin temperature to con�ict events are provided in Table 2.

Our �rst set of hypotheses posits that the environmental processes directly cause con�ict events. Based on the 
empirical causal structure, the estimated causal e�ect of skin temperature on total con�ict events is statistically 
signi�cant at the 0.1% level and shows a positive relationship to con�ict eventsacross all spatial distances (see 

Distance Wheat production Latent energy Soil moisture Skin temperature Population density

0 km 14.02*** (3.87) 24.27*** (6.21) -18.30*** (4.57) 51.67*** (9.53) 29.66*** (5.75)

3–27 km 23.48*** (4.06) 33.92*** (5.84) -20.72*** (4.23) 64.16*** (7.55) 22.61*** (4.26)

27–40 km 10.69*** (2.57) 21.83*** (4.28) -17.93*** (3.13) 48.17*** (7.44) 29.42*** (4.48)

40–50 km 15.62*** (3.38) 26.64*** (5.19) -19.95*** (3.83) 56.04*** (8.13) 26.65*** (4.50)

50–59 km 12.38*** (2.69) 23.22*** (4.41) -18.93*** (3.42) 45.23*** (6.45) 34.42*** (4.67)

59–66 km 7.59*** (2.22) 15.05*** (3.54) -10.41*** (2.40) 36.99*** (6.97) 16.52*** (3.28)

66–73 km 13.99*** (3.14) 28.43*** (5.35) -16.99*** (3.79) 58.17*** (7.79) 18.17*** (4.08)

73–80 km 14.62*** (3.71) 28.87*** (5.54) -19.53*** (4.04) 71.40*** (8.98) 32.45*** (5.93)

80–86 km 11.18*** (2.57) 15.61*** (3.61) -14.71*** (2.85) 41.21*** (6.85) 26.29*** (3.97)

86–92 km 14.45*** (2.72) 20.63*** (4.07) -16.43*** (3.08) 47.49*** (6.32) 23.16*** (3.84)

92–99 km 12.00*** (2.51) 21.88*** (4.28) -19.68*** (3.45) 41.15*** (5.97) 26.86*** (3.98)

99–104 km 18.30*** (3.68) 26.26*** (5.17) -25.15*** (4.25) 63.40*** (8.29) 43.84*** (5.59)

104–110 km 23.17*** (4.55) 37.04*** (6.58) -24.85*** (4.79) 81.29*** (9.38) 27.69*** (5.08)

110–116 km 7.70*** (1.96) 13.16*** (3.14) -14.46*** (2.63) 30.19*** (5.87) 30.58*** (3.71)

116–121 km 11.67*** (2.65) 23.80*** (4.76) -14.04*** (3.04) 45.79*** (7.41) 29.06*** (4.32)

121–126 km 6.92*** (1.73) 13.87*** (3.02) -16.06*** (2.66) 33.26*** (5.54) 27.72*** (3.40)

126–132 km 16.08*** (3.01) 23.86*** (4.48) -16.46*** (3.18) 50.07*** (6.82) 21.62*** (3.52)

132–137 km 8.66*** (2.26) 15.93*** (3.97) -13.12*** (2.83) 33.65*** (6.82) 18.19*** (3.37)

137–142 km 11.02*** (2.54) 16.71*** (3.82) -14.94*** (2.91) 41.28*** (6.97) 22.61*** (3.55)

142–147 km 15.89*** (3.19) 20.92*** (4.60) -17.00*** (3.57) 54.80*** (7.76) 31.78*** (4.57)

147–152 km 9.75*** (2.20) 18.46*** (4.04) -11.33*** (2.53) 30.66*** (5.74) 15.23*** (3.49)

152–158 km 11.11*** (2.47) 17.22*** (4.00) -14.67*** (2.97) 34.63*** (6.26) 20.02*** (3.31)

158–163 km 14.61*** (2.98) 27.24*** (5.22) -13.79*** (3.30) 56.28*** (7.80) 25.70*** (4.71)

163–168 km 14.06*** (2.83) 22.30*** (4.62) -18.70*** (3.60) 43.42*** (6.85) 29.26*** (3.96)

168–173 km 11.76*** (2.73) 18.74*** (4.48) -15.62*** (3.28) 32.77*** (6.59) 28.39*** (4.20)

173–178 km 13.12*** (2.98) 23.36*** (4.77) -15.54*** (3.33) 54.18*** (7.64) 24.45*** (4.31)

178–183 km 8.16*** (2.37) 12.68*** (3.43) -12.00*** (2.62) 41.87*** (8.02) 24.57*** (4.18)

183–188 km 17.17*** (3.43) 22.95*** (4.99) -20.85*** (4.09) 48.57*** (7.56) 39.79*** (5.41)

188–193 km 14.64*** (2.90) 25.01*** (5.14) -20.75*** (4.10) 50.37*** (6.90) 19.87*** (3.66)

193–198 km 15.00*** (3.18) 23.31*** (4.93) -17.27*** (3.58) 48.83*** (7.66) 24.65*** (4.80)

Table 1. �e causal e�ects across varying distances. �e table presents standardized causal estimates across a 

range of distance bins. �e corresponding standard errors, which re�ect the uncertainty of the estimated causal 

e�ects, are shown in parentheses. Statistical signi�cance levels: 5%: *; 1%: **; 0.1%: ***.

 

Scientific Reports |        (2025) 15:16198 5| https://doi.org/10.1038/s41598-025-90767-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Table 1). �is includes a 47.35 non-spillover e�ect at a distance of zero (see Table 2). Since there is no evidence to 
reject the null hypotheses for (H1a) and (H1c), we accept (H1b), and we do not accept (H1a) and (H1c).

Further, our second set of hypotheses posits that the environmental processes indirectly cause con�ict events. 
Latent energy was hypothesized to increase the count of con�icts indirectly (H2a). According to the empirical 
causal structure, all causal e�ects of latent energy on con�ict events must be mediated. Everything else being 
equal, the estimated causal e�ects of latent energy on con�ict events are statistically signi�cant at the 0.1% 
level and positive across all spatial distances. �is includes a 24.27 non-spillover e�ect at a distance of zero (see 
Table 1). �us, we accept (H2a). Similarly, soil moisture was hypothesized to decrease the count of con�icts 
indirectly (H2c). With no direct paths from soil moisture to con�ict events,  its e�ects can only be mediated. 
Everything else being equal, the estimated causal e�ects of soil moisture on con�ict events are statistically 
signi�cant at the 0.1% level and negative across all spatial distances, including a -18.30 non-spillover e�ect 
at a distance of zero (see Table 1). �erefore, we also accept (H2c). However, for the indirect paths from skin 
temperature to armed con�ict activity through population density (H2b), , the estimated causal e�ects of skin 
temperature on con�ict events are not statistically signi�cant at the 0.1% level across all spatial distances (see 
Table 2). Consequently, we do not accept (H2b).

Finally, our third set of hypotheses posits that the causal e�ects of the environmental processes on con�ict 
events are agriculturally and demographically mediated.  Speci�cally,  given the indirect paths from soil 
moisture and latent energy to armed con�ict activity,  wheat production was hypothesized to decrease the 
count of con�ict events (H3a), while population density was hypothesized to increase the count of con�ict 
events (H3b).  Everything else being equal, the estimated causal e�ects of wheat production on con�ict events are 
statistically signi�cant at the 0.1% level and positive across all spatial distances, including a 14.02 non-spillover 
e�ect at a distance of zero (see Table 1).  Similarly, the estimated causal e�ects of population density on con�ict 
events are statistically signi�cant at the 0.1% level and positive across all spatial distances, with a 29.66 non-

Distance
Temperature → Population → Violence against 
civilians → Battles → Con�icts Temperature → Battles → Con�icts

Temperature → Population → Violence 
against civilians → Con�icts

0 km 1.39 (0.83) 47.35*** (9.36) 2.93* (1.25)

3–27 km 0.13 (0.17) 63.34*** (7.50) 0.69 (0.72)

27–40 km 1.29* (0.65) 44.88*** (7.31) 2.00** (0.82)

40–50 km 0.68 (0.52) 52.46*** (8.03) 2.91** (1.02)

50–59 km 0.52 (0.42) 41.22*** (6.28) 3.49** (1.28)

59–66 km 0.19 (0.26) 35.14*** (6.93) 1.66* (0.70)

66–73 km 0.87 (0.54) 55.63*** (7.76) 1.66*** (0.54)

73–80 km 0.58 (0.52) 68.62*** (8.88) 2.20* (1.04)

80–86 km 0.30 (0.48) 37.21*** (6.74) 3.70*** (1.18)

86–92 km 0.36 (0.27) 45.67*** (6.25) 1.46 (0.75)

92–99 km 2.05** (0.74) 36.79*** (5.86) 2.30*** (0.64)

99–104 km 1.31 (0.71) 58.73*** (8.06) 3.36* (1.41)

104–110 km 0.58 (0.56) 77.91*** (9.29) 2.79** (1.06)

110–116 km 2.15** (0.76) 24.85*** (5.65) 3.19*** (0.97)

116–121 km 0.95 (0.52) 42.72*** (7.28) 2.12* (0.98)

121–126 km 1.73* (0.70) 28.14*** (5.34) 3.39*** (1.01)

126–132 km 1.13* (0.51) 47.13*** (6.73) 1.82** (0.69)

132–137 km 0.82* (0.39) 30.58*** (6.75) 2.25*** (0.76)

137–142 km 1.53* (0.61) 37.31*** (6.87) 2.45*** (0.74)

142–147 km 1.58 (0.72) 49.34*** (7.62) 3.88*** (1.10)

147–152 km 0.35 (0.24) 29.54*** (5.69) 0.76 (0.49)

152–158 km 0.97* (0.45) 31.38*** (6.18) 2.28*** (0.71)

158–163 km 0.63 (0.51) 53.10*** (7.72) 2.55*** (0.90)

163–168 km 1.04 (0.56) 39.35*** (6.68) 3.04** (1.14)

168–173 km 0.71 (0.48) 30.67*** (6.47) 1.39 (0.83)

173–178 km 1.96* (0.87) 49.37*** (7.56) 2.85*** (0.78)

178–183 km 1.14 (0.65) 38.80*** (7.92) 1.93* (0.82)

183–188 km 1.84* (0.84) 43.89*** (7.36) 2.84** (1.08)

188–193 km 0.52 (0.50) 47.06*** (6.84) 2.79*** (0.85)

193–198 km 1.79* (0.90) 44.92*** (7.56) 2.12** (0.74)

Table 2. �e causal e�ects of skin temperature on con�ict events across three di�erent paths and varying 

distances. �e table presents standardized causal estimates of the e�ects of skin temperature on con�ict events 

across three distinct paths along a range of distance bins.. �e corresponding standard errors, which re�ect the 

uncertainty of these estimates,  are shown in parentheses. Statistical signi�cance levels: 5%: *; 1%: **; 0.1%: ***.
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spillover e�ect at a distance of zero (see Table 1. �ese �ndings lead us to reject the null hypotheses for (H3a) and 
(H3b), not accepting (H3a) and accepting (H3b) across all spatial bins. Finally, the removal of wheat production, 
skin temperature. and population density from the empirical causal structure would signi�cantly disconnect 
soil moisture and latent energy from con�ict events. Our causal estimates corroborate these structural �ndings.

Seasonal effects
In addition to the aggregated results, we applied the causal discovery algorithm to temporally non-aggregated 
data slices at each season’s mid-point. �e results are presented in Figs. 7, 8, 9 and 10 of the Appendix. As seen in 
the �gures, applying the causal discovery algorithm to the seasonal data slices reveals highly irregular empirical 
causal structures that deviate from the prevailing domain knowledge.

Discussion
We make three contributions to armed con�ict research. First, we demonstrate how advances in causal 
methodology can be applied to armed con�ict research. While natural experiments on armed con�ict are rare, 
and most observations are non-experimental24, causal assumptions can bridge the gap between experimental 
and non-experimental studies. By leveraging causal methodology, we show how to retrieve an empirical causal 
structure, identify causal paths, and estimate causal e�ects using non-experimental data. Additionally, the 
probability of distances between hypothesized and empirically discovered causal structures can be quanti�ed 
and tested59,60, especially when domain knowledge informs causal discovery of naturally caused armed con�ict. 
Otherwise, an empirical causal structure can be retrieved exploratorily, as shown in our study.

Second, in the context of environmental security research, we con�rm the existence of cause-and-e�ect 
relationships between environmental and demographic variables and armed con�ict outcomes. We demonstrate 
that environmental processes, mediated by agriculture and demographics, play a role in causing con�ict. By 
disentangling the causal factors underlying the naturally caused armed con�ict, we addressed the research gap 
in the environmental security literature16,25,43. �e early research avoided engaging in the metaphysical debate 
over the relative importance of natural causes of armed con�ict7. By retrieving the empirical causal structure 
from non-experimental con�ict observations, we identi�ed the causal mechanism linking the environment to 
con�ict. Our empirical causal structure shows that the environmental processes, particularly soil moisture and 
latent energy, can be at the core of naturally caused armed con�ict. We also established direct and indirect causal 
e�ects, such as the direct aggravating e�ect of skin temperature andthe indirect alleviating e�ect of soil moisture. 
Our �ndings show that the e�ects of these environmental causes on con�ict events are mediated by demographics 
and vital resources. Additionally, we con�rm that population density aggravates con�ict however, contrary to 
our hypothesis, we �nd no evidence that higher wheat production alleviates con�ict activity.

�ird, we show how our causal �ndings can inform the design of more e�ective policy interventions to 
address armed con�ict outcomes. Our �ndings provide a foundation for policy approaches that mitigate 
armed con�ict. Policy acceptance hinges on unpacking black-box predictions5, and because causality explains 
underlying mechanisms, it o�ers greater interpretability than other approaches to analysis do61. Causality also 
holds policy relevance. For instance, mediators such as population density and wheat production are key points 
where indirect causal paths from the environmental factors to con�ict outcomes can be strategically targeted 
for intervention. Causal frameworks also enable validation of additional such points. �us, understanding the 
causal mechanisms behind naturally caused armed con�ict can guide the development of policies aimed at 
addressing its root causes.

Our research is constrained by several limitations. First, regarding our variables, many vital resources are 
in�uenced by factors such as precipitation, temperature, energy, and water availability24,51,52,62,63, which justi�es 
the selection of wheat, skin temperature, soil moisture, and latent energy as explanatory variables. Population 
density is also a well-established variable54,55,64. However, the causal su�ciency assumption posits that any 
omitted, causally relevant variable can confound causal estimates65. In our case, this primarily applies to social 
and political variables (e.g., political power-sharing arrangements, inter-group animosities, and horizontal 
inequality)2,66,67. �e absence of these variables may have violated the causal su�ciency assumption, potentially 
confounding our causal estimates. Unfortunately, such data is not available at an adequate resolution for a 
data-scarce country like Iraq. Even if these variables had been available, however, their inclusion might have 
introduced reverse or cyclical causality, thereby confounding our estimates. Hence, the trade-o� between 
methodological rigor and domain knowledge is an inherent challenge of causal modeling.

Our second limitation relates to the geographical nature of subdistricts. �e need to delimit the con�ict 
under study both geographically and historically5 constrains the generalizability of our �ndings to other 
geographies. �is re�ects a broader trade-o�: the need to localize armed con�ict spatially and temporally 
versus the need to ensure su�cient variability in the sampled observations. Moreover, because subdistricts are 
geographical units, it cannot be assumed that the observations are independently and identically distributed. 
Neither con�ict activity nor the explanatory variables necessarily conform to subdistrict borders. Speci�cally, 
the tribal dynamics play a role in shaping armed con�ict in Iraq, and the subdistrict and tribal boundaries do not 
always coincide68. As a result, it is plausible that some Iraqi subdistricts are a�ected by causal e�ects from other 
Iraqi subdistricts40,69,70: While our spatially explicit structural equation modeling accounted for such spillover 
e�ects, the causal discovery method used to retrieve the causal structure does not incorporate a remedy for this 
spatial dependency.

Our third limitation pertains to the temporal dimension of causality. Since causes are conventionally 
expected to precede their e�ects, temporality is a fundamental property of causal inference. However, the 
limited availability and quality of our time-series data constrained our ability to model the temporal dynamics of 
naturally caused armed con�ict. Speci�cally, the available time-series were not su�ciently granular or consistent 
to support robust temporal modeling. �is lack of time-series data prevented us from inferring seasonal e�ects 
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beyond the irregular causal structures, deviating from the domain knowledge. �e irregular causal structures for 
the seasonal snapshots are unlikely to be robust, as it is unlikely that the entire environmental con�ict dynamic 
could have unfolded within a single month.

Several research directions could address the limitations outlined above. First, given the exclusion of social 
and political variables from our study, subsequent studies should assess the robustness of our causal �ndings 
under the assumption of unobserved confounding—i.e., by relaxing the causal su�ciency assumption. Causal 
frameworks for this purpose already exist69,71,72. An increasing number of these tools are now available as o�-
the-shelf solutions, providing researchers with practical means to integrate them into their methodology72–74.

Further research should also investigate the generalizability of our �ndings to other geographical localities. 
�e smaller the size of locality, the less variable are the observations. Consequently, the less likely it is that 
their variability su�ces for statistical signi�cance. Any reduction in the size of locality can arti�cially make 
causal �ndings less statistically signi�cant. However, it is also possible to overcome the reduced variability of 
observations, characteristic of small-size localities, by describing con�ict observations in informationally dense 
terms. �is can be achieved by describing each locality with additional explanatory variables, while dimensionally 
reducing the number of explanatory variables to a smaller number of latent factors. Armed con�ict outcomes 
can then be modeled in terms of these latent factors. �is approach allows us to examine more diverse contextual 
data and assess the extent to which our �ndings can be generalized and applied to di�erent geographical regions 
and con�ict contexts.

Geography also matters for strategy. Natural resources are inherently geo-located, as are competing factions. 
Claiming these resources, competing factions o�en act strategically. �ese dynamics rarely unfold in a socio-
political and demographic vacuum. For instance, the already mentioned cross-subdistrict tribal networks can 
introduce both natural and strategic contingencies into con�ict dynamics, as has been observed across Iraqi 
subdistricts. Obviously,  armed con�ict within some Iraqi subdistricts may contract causal e�ects from other 
subdistricts because of geographical reasons. However,   further investigation is warranted into whether such 
spillover e�ects are primarily driven by natural environmental factors or by strategic human agency.  Causal 
frameworks that support such investigation are already available for use69,70.

Our �ndings should also be examined for temporal e�ects.  �e retrieved empirical causal structure already 
suggests the non-linearity of armed con�ict outcomes75.  Future research should, therefore, investigate how 
to infer causal e�ects on armed con�ict dynamics across time. Causality can be temporally represented by 
causal time-series graphs76. Such graphs can identify time-varying causal paths and guide the estimation of 
temporal causal e�ects. However, not only would this require time-series data of su�cient quality, but also a 
plausibly hypothesized mechanism of temporal causal e�ects, which may go beyond our explanatory variables. 
Additionally, most currently available causal discovery methods for time-series data rely on the stationarity 
assumption, which limits their ability to detect and account for seasonal �uctuations in con�ict dynamics77.

By explaining why phenomena occur as they do, causal analysis o�ers greater pragmatic utility for 
policymaking than any other methodological approach. �is strengthens the case for accepting our �ndings 
and underscores the broader value of applying causal methodology. �is also encourages adoption of causal 
methodology in other policy domains where decisions can bene�t from empirically grounded causal evidence.

In the context of environmental security, understanding the causal linkages between environmental factors 
and con�ict provides valuable guidance for designing con�ict mitigation strategies. By targeting mediators along 
natural causal pathways to con�ict outcomes, policy interventions can be cra�ed to disconnect these pathways 
before aggravating causal e�ects reach con�ict outcomes. Such interventions can be cost-e�ective and even 
preventive. For instance, well-conceived social and migration policies aimed at reducing population density can 
disconnect some of these causal links. Similarly, development aid policies can mitigate con�ict by addressing 
environmental stressors �is can be achieved by strategic investments in long-term hydrological infrastructure. 
Finally, our �ndings enable the geographical assessment of Iraqi subdistricts for their speci�c vulnerability to 
particular causal e�ects, thereby informing the spatial targeting of policy implementation.

In conclusion, quasi-experimental approaches o�en fall short in the study of armed con�ict, and natural 
experiments are rare. Further, ethical considerations preclude rigorous experimentation in this domain. To the 
best of our knowledge, our study is the �rst to apply the recent advances in the theory and methods of causality 
to the analysis of naturally caused armed con�ict. Relying exclusively on non-experimental observations, we 
derived an empirical causal structure that corresponds to the underlying mechanism linking the environmental 
factors to con�ict outcomes. Based on this structure, we exempli�ed how to infer the causal e�ects of natural 
processes on armed con�ict. While our �ndings rest on speci�c assumptions, they o�er a foundation that can be 
strengthened through additional validation. Such validation—particularly through interdisciplinary methods—
is therefore welcome.

Data and methods
Data sources
�e armed con�ict activity variables were sourced from the Armed Con�ict Location and Event Data Program2 
(ACLED). We also retrieved geo-coded maps from multiple sources, including the Humanitarian Data 
Exchange, the European Centre for Medium-Range Weather Forecasts of Copernicus Climate Change Service28, 
NASA27,29,31, the Center for International Earth Science Information Network of Columbia University30, and 
MapSPAM78. �ese maps provided grid-based representations of our explanatory variables. Our unit of analysis 
is the Iraqi subdistrict (n=294), encompassing all subdistricts across the country. �e observational time frame 
spans from January 1, 2020, to January 1, 2022. Within this period, observations were aggregated into a single 
cross-sectional dataset. �e choice of this time horizon was motivated by the high availability of recent data. In 
cases where a grid layer was unavailable for the entire period, we used data covering the maximum available 

Scientific Reports |        (2025) 15:16198 8| https://doi.org/10.1038/s41598-025-90767-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


portion of the horizon for the corresponding variable. �e aggregation methods are speci�ed in the sections 
below.

Despite a strong rationale for including additional explanatory variables that capture the societal and 
political context of Iraq2,66,67, Iraq remains a data scarce country, and such variables are generally unavailable at 
a su�ciently granular resolution. We addressed this issue of unavailability as one of our key research limitations 
in the discussion section.

Conflict activity variables
We retrieved several armed con�ict variables from ACLED2. �ese variables are geospatially linked to speci�c 
geographical coordinates and are geo-coded as counts. ACLED categorizes con�ict activity into distinct 
types, including battles, explosions/remote violence, violence against civilians, protests, riots, and strategic 
developments.

Con�ict events, violence against civilians
Violence against civilians refers to the deliberate in�iction of harm on unarmed non-combatants by organized 
armed factions. Such events include acts of sexual violence, abductions, and forced disappearances2.

Con�ict events, battles
In addition to violence against civilians, we also included con�ict events categorized as battles, which are de�ned 
as violent engagements between two organized armed groups.

Total con�ict events
Our outcome variable was the total count of con�ict events, proxied by summing the counts of each speci�c 
con�ict event type (i.e., battles, explosions/remote violence, violence against civilians, protests, riots, and 
strategic developments).

Explanatory variables
Environmental variables
Some environmental conditions pertain speci�cally to weather. While weather refers to short-term atmospheric 
conditions, climate describes the average weather of a region over an extended period. We speci�ed our 
environmental variables in line with Sakaguchi, Varughese, and Auld16. Given that temperature, soil moisture, 
and heat have been already hypothesized—and empirically demonstrated—to be associated with and causal to 
violent con�ict24, we selected these variables to represent the weather conditions in Iraq.

Skin temperature Temperature is a physical quantity that indicates how hot matter is79,80. For our analysis, we 
selected skin temperature—the temperature at the interface between the Earth’s surface and the atmosphere—
because it directly in�uences the growth and cultivation of agricultural resources, as well as the availability of 
water81. Skin temperature data was sourced from ERA5-Land dataset28. Each pixel on the corresponding map, 
with a spatial resolution of 11,132 square meters,  represents a temperature value measured in Kelvins.

Soil moisture Soil moisture refers to the total amount of water, including water vapor, present in unsaturated 
soil79,80. We selected soil moisture as an explanatory variable because it impacts the growth and cultivation of 
agricultural resources, as well as the availability of water. �e soil moisture data was also sourced from ERA5-
Land dataset28, speci�cally at a depth of 28–100 cm. Each pixel on the map, with a resolution of 11,132 square 
meters, represents a volumetric fraction of water at this depth.

Latent energy Also referred to as latent heat, latent energy refers to the energy released from the Earth’s surface 
to the atmosphere. Latent energy is associated with the evaporation or condensation of water vapor at the Earth’s 
surface79. It represents an environmental process that extends beyond temperature but still impacts the physical 
surroundings. We sourced the average latent heat net �ux27 from NASA and United States Geological Survey’s 
MODIS 006 MOD16A2 dataset. �e �ux represents the average latent energy passing through matter. Corre-
sponding to a resolution of 500 square meters, each pixel on the map displays a value in Joules.

Environmental scarcity
Environmental scarcity refers to the lack of vital resources on which human communities directly and critically 
depend. Since the scarcity of agricultural resources can catalyze violent con�ict16, earlier �ndings on wheat 
production guided our proxy for crop availability in Iraq19.

Wheat production We sourced the total wheat production for rainfed and irrigated crops from the 2020 ver-
sion of Global Spatially Disaggregated Crop Production Statistics Data (MapSPAM, Version 1.0) 78. Each pixel 
on the map, corresponding to a resolution of 10,000 square meters,  shows a value in metric tons. Due to the 
constrained time horizon of this dataset, the wheat production variable was only available for 2020 as the most 
recent observation.

Demographics
Population density Given that population density has been found relevant for armed con�ict activity55, we 
sourced this variable from the Gridded Population of the World Version 4.11 dataset by the Center for Interna-
tional Earth Science Information Network at Columbia University30. Each pixel on the map, corresponding to 
a resolution of 927.67 square meters, shows an estimated number of people per 30 arc-second grid cell. Due to 
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the constrained time horizon of this dataset, the population density variable was sourced for 2020 as the most 
recent available observation.

From geo-coded observations to subdistrict values
Our variables are geo-coded, meaning that each corresponding value is linked to speci�c geographical 
coordinates. Since our unit of analysis is the Iraqi subdistricts, the value for each variable within a subdistrict 
must be an aggregate of the geo-located values of that variable within that subdistrict. However, the geo-coded 
maps containing these variables do not include subdistrict borders. To enable the geographical aggregation 
of pixel values across subdistricts, a shape�le with the subdistrict borders was integrated into each map. We 
sourced this shape�le from the UN OCHA Humanitarian Data Exchange, and it stores the subdistrict borders as 
a geometry variable (i.e., a polygon). �e 294 subdistrict borders are shown in Fig. 4.

Further, the con�ict activity variables are geo-located. For each subdistrict, we counted the geo-located values 
of con�ict activity variables reported within that subdistrict’s polygon. �is procedure was applied to the count 
of battle events, violent events against civilians, and the total count of con�ict events.

Furthermore, the available grids store values of the explanatory variables as pixels, each associated with 
speci�c geographical coordinates. We bounded these pixel values by the subdistrict polygons, as previously 
described. Since the storage of explanatory variables was no longer sparse, we aggregated the values of 
explanatory variables to highlight the extreme values of each observed explanatory variable. Speci�cally, pixel 
values for soil moisture were aggregated geographically as pixel minima and temporally as subdistrict standard 
deviations. Pixel values for skin temperature were aggregated geographically as pixel maxima and temporally as 
subdistrict standard deviations. Pixel values for average latent heat �ux were aggregated geographically as pixel 
maxima and temporally as subdistrict standard deviations. Moreover, pixel values for wheat production were 
aggregated geographically as pixel means for the year 2020, the most recent available observation. Finally, pixels 
values for population density were aggregated geographically as pixel maxima for the year 2020, the most recent 
available observation.

Finally,  considering that seasonality plays a crucial role in the relationship between environmental and 
con�ict variables82, we extracted four non-aggregated time slices corresponding to the seasonal midpoints: 
January, April, July, and October 2020. �e methods detailed in the following section were applied to both the 
aggregated data and the non-aggregated time slices, with a focus on demonstrating where the method proves 
most e�ective.

Methods
Causal methodology traditionally requires experimentation83–86. However, it is now possible to infer causality 
even from non-experimental observations26,87–90. Acknowledging the need for non-experimental approaches in 
environmental security, we argue that it is possible to retrieve the causal structure linking the environment to 
con�ict. By applying causal methodology to non-experimental observations, the underlying paths and e�ects of 
the causal structure can be identi�ed and quanti�ed. �is process unfolds in three stages: causal discovery, causal 
identi�cation, and causal inference.

Fig. 4. Subdistrict borders in Iraq.
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�e following three subsections explain how causality is discovered, identi�ed, and inferred from non-
experimental observations. �ese subsections exemplify how to respond to a speci�c causal query: “What is the 
magnitude of the causal e�ect of soil moisture on the count of con�ict events?”

Causal discovery
�e purpose of causal discovery is to retrieve a causal structure from available observations65. �ese structures 
can be modeled graphically26. Each directed edge in such a causal graph represents causality between the node 
with an outgoing arrow (the cause) and the node with an incoming arrow (the e�ect)26. �e graph on the le� in 
Fig. 5 shows a directed edge: Soil moisture → Con�ict events, indicating that a change in soil moisture causes a 
change in con�ict events. In contrast, the graph in the middle shows a bidirected edge: Soil moisture ↔ Con�ict 
events, suggesting a reciprocal relationship between soil moisture and con�ict events.

Each node between a node with only outgoing arrows (i.e., a root cause) and a node with only incoming 
arrows (i.e., an e�ect or outcome) is a mediating node (e.g., population density). Further, the graph on the right 
in Fig. 5 is characterized by a causal cycle: Soil moisture → Con�ict events → Population density → Soil moisture. 
Despite recent theoretical advances91, the simplest conception of causality requires bidirected edges and causal 
cycles to be absent from a causal graph, as they indicate hidden common causes and reverse causality, both of 
which can confound causal inference26. Graphs without bidirected edges and cycles are referred to as directed 
acyclic graphs (DAGs). �e simplest conception of causality dictates that causal discovery should retrieve a DAG 
from available observations65.

Following this logic of the causal discovery stage, we retrieved a DAG from our observations using Greedy 
Equivalence Search (GES) algorithm65. We selected GES, because it is considered a suitable causal discovery 
method for small sample sizes65. We employed the Bayesian Information Criterion (BIC) as our loss function. 
�e GES algorithm iteratively adds and removes edges in a stepwise manner, scoring each con�guration to 
identify the structure that best �ts the data, while optimizing the BIC. �e output was the most likely DAG given 
our observations. �e nodes of the DAG correspond to our armed con�ict activity and explanatory variables, 
while the edges represent the causal relationships between them.

Causal identi�cation
�e purpose of causal identi�cation is to determine whether, given a causal structure, the causal query has 
a unique answer92. If the query is unidenti�able, the identi�cation process reveals this. Additionally,  causal 
identi�cation helps in formulating a quantity that provides a unique answer to the query26,92. �is formula, 
which allows for the quanti�cation of the answer, is referred to as an estimand93.

Given the arrow from Soil moisture → Con�ict events in Fig. 6, a node like population density introduces an 
alternative path between soil moisture and con�ict events. If this node is not explicitly considered, it is referred 
to as a confounder26. If all confounders can be accounted for, the causal query can be properly identi�ed.

Given the probabilistic interpretation of causal graphs26, let P (.|.) represent a conditional probability 
distribution. Let C, M, and D represent the con�ict events, soil moisture, and population density 
variables, respectively, and let c, m, and d represent their corresponding realized values. �e do(.) operator 
represents intervention. If no variable were associated with soil moisture and con�ict events (see Fig. 6), the unique 
answer to our causal query would have been P (C| do (m)) = P (C |m). However, since population density 
introduces an alternative causal path between soil moisture and con�ict events, failing to account for population 
density could prevent the determination of a unique answer to the query. �erefore, to identify the causal query 
properly, the confounding e�ect of population density must be marginalized. As a result, the causal graph in 

Fig. 5. Bidirected edges and causal cycle in a causal structure.
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Fig. 6 enables the identi�cation of a unique answer to our query, with P (C| do (t)) =
∑

DP (C| t, D )P ( D) 
representing this unique answer.

�is reasoning illustrates an identi�cation criterion known as the backdoor criterion26. For other identi�cation 
methods, we refer the reader to Tian and Pearl94 and Shpitser and Pearl92. By applying this reasoning to the 
retrieved DAG, we were able to identify causal estimands for our explanatory variables, provided that access to 
the relevant variables made such identi�cation feasible.

Causal estimation and hypothesis testing
�e �nal stage of causal inference involves estimation and hypothesis testing. In this stage, an estimator (i.e., a 
method for calculating estimates) is applied to a causal estimand, using sampled observations26,93. �is process 
produces an estimated causal quantity of causal e�ect, i.e., causal estimate. Ultimately, an assessment is made to 
determine whether the estimate should be attributed to random error. If not, the quantity is deemed statistically 
signi�cant.

 Since the values of environmental variables in one subdistrict can in�uence the environmental security of 
another , the estimation procedure required a method capable of accounting for spatial confounding. To address 
this, we employed spatially explicit structural equation modeling (SESEM)95.

SESEM combines structural equation modeling (SEM) with spatial dependence modeling to account for 
e�ects across varying spatial lag distances. While SEM was used to implement the retrieved causal structure, 
spatial dependence modeling addressed the con�ict dynamics that extended beyond the subdistrict boundaries.

A straightforward way to incorporate spatial dependence modeling via lag distances is to calculate the 
distances between subdistricts. �is can be done in several ways. �e most intuitive method involves computing 
the centroid of each subdistrict and measuring the distances between these centroids. Alternatively, a network 
can be formed by connecting adjacent subdistricts with edges, in which case the distance between any two 
subdistricts equals the length of the shortest path between them.

�e �rst step in applying SESEM was to �t a non-spatial SEM model to the data96. Next, spatially explicit 
variance–covariance matrices were computed across a range of lag distances, which were binned according to 
sample pair distances. We focused on the lowest 20% of these distances, as spillover e�ects are more likely to 
occur among neighboring subdistricts. To ensure reliable inference across each distance range, each bin was set 
to include 500 sample pairs. SEM models were then �tted for each lag distance, and edge coe�cients, standard-
errors, and p-values were computed. Finally, individual causal paths were parameterized to obtain path-speci�c 
coe�cients, standard-errors, and p-values.

Data availability
All the data is available at https:   //gith ub. com/ HCSS -Da ta-Lab/Sub missi on -An gling-For-Causality. �is  r e p o s i t 
o r y includes all the code for the method implementation, with comprehensive in-line documentation provided 
directly within the code �les.
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Fig. 6. Confounder: Population density.
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