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Abstract. Causality is increasingly integrated into decision-making pro-
cesses. Often, the goal is to optimize over causal interventions to achieve
specific policy objectives. However, research into causal optimization has
bifurcated into either the online optimization of interventions in causal
models or the offline optimization of decision rules in causal influence
diagrams. This paper introduces an approximate method for offline op-
timizing interventions in arbitrary hybrid Bayesian networks using ob-
servational data. The optimization problem is approached by compiling
discretized Bayesian networks as binary decision diagrams, whereafter
running interventional queries is very efficient. This efficiency is exploited
by running heuristic optimization algorithms to optimize over the inter-
ventional queries. By running experiments on a variety of large hybrid
Bayesian networks, we demonstrate the practical utility of our method
and discuss policy relevance.
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1 Introduction

In the realm of decision-making challenges, policymakers draw increasingly on
methods from causality to enhance policy analysis [21]. The underlying rationale
is that by comprehending the causal dynamics inherent in a policy problem, one
can craft more efficacious policy interventions. Consequently, optimizing causal
interventions is crucial for informed decision-making in uncertain environments.

Computing the probabilistic effects of interventions, that involve forcing as-
signments of variables, relies on the do-calculus [33] to convert the resulting
interventional distributions to observational ones. Often, the observational dis-
tributions can be computed using Bayesian network inference techniques [20].
Given the limitations of these techniques in the continuous setting [36], there has
been a focused research effort on discretizing Bayesian networks (BNs) [9,31,29],
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Fig. 1: The methodology used in this paper. After discretizing and estimating
the conditional probability tables (CPTs) of the Bayesian network (BN), the
network is encoded into conjunctive normal form (CNF). This encoding allows
the compilation as a binary decision diagram (BDD) once, before the optimiza-
tion starts. In the optimization process, heuristic optimization algorithms make
use of the cheap weighted model counting operation on BDDs to compute the
otherwise prohibitively costly interventional distributions.

which allows for the application of established discrete Bayesian network in-
ference methods. However, the discrete Bayesian network inference techniques
needed to compute the effect of interventions are computationally expensive,
making optimization over multiple possible interventions even costlier. To tackle
these computational challenges, we approach this problem with binary decision
diagrams (BDDs). Inference with BDDs first requires performing a computa-
tionally expensive compilation step, after which computing inference queries can
be done in time linear in the size of the BDD [14,44]. While compiling a BN
into a BDD is a heuristic compression method without theoretical guarantees of
reducing inference complexity, it often proves much faster in practice [44] and is
particularly advantageous when optimizing over multiple interventional queries.

1.1 Approach and Contributions

In this paper, we propose a methodology (see Figure 1) to solve the offline

Causal Global Optimization problem [2] on hybrid Bayesian networks by encoding
discretized versions of the BNs as binary decision diagrams. We subsequently
showcase the performance of the heuristic optimization algorithms that use these
efficient encodings to optimize over interventional queries. A variety of synthetic
and real-world causal Bayesian networks with different characteristics have been
subjected to the proposed methodology to ensure generalizability of the results
and application diversity. Our contribution is three-fold:

• We extend the implementation of the do-operator and interventional dis-
tributions to decision diagrams encoded from Bayesian networks without
unobserved confounders.
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• We compare and evaluate the performance of various optimization algo-
rithms for optimizing causal interventions, thereby establishing their poten-
tial in causal contexts.

• Through practical demonstrations, we highlight the real-world value of our
proposed methodology for decision-makers.

This paper is structured as follows. First, we discuss related research in Sec-
tion 1.2. Then, the problem statement is formulated in Section 2, whereafter,
our methodology is introduced in Section 3. The methodology is applied in Sec-
tion 4. Finally, Section 5 reflects on the findings and identifies future research
avenues.

1.2 Related Work

Research on causal decision-making is increasingly gaining traction. Earlier ap-
proaches have focused on online learning, with a particular focus on causal multi-
armed-bandit problems. In these problems, an agent balances the exploration-
exploitation trade-off through interventions in a causal system [8,24,23,22].

Extending bandits to the continuous domain and letting an agent carry out
exploratory interventions prior to choosing the optimal intervention leads to the
formulation of the online Causal Global Optimization problem [2], which has been
further extended to the dynamic [1], constrained [3], stochastic [19], contextual
[4] and adversarial settings [40].

While the aforementioned approaches all pertain to online scenarios, where
agents progressively acquire knowledge through actions, performing interven-
tions in real scenarios can be impractical or unethical. Therefore, the realm of
causal decision-making also receives attention in the offline context. In this set-
ting, (causal) Bayesian networks can be extended to (causal) influence diagrams,
distinguishing clearly among nodes representing chance, decision, and utility [15].
Decision nodes consist of decision rules, which are sets of guidelines dictating ac-
tions in response to various assignments in parent nodes [20]. Effective methods
for maximizing utility in influence diagrams by optimizing decision rules have
been suggested [20]. These methods optimize the decision rules with respect to
the (causal) structure of the diagram but do not consider causal interventions
containing the do-operator.

Similarly, outside the online realm, there has been much research on opti-
mizing individualized treatment [25,27,5]. These works go one step further in
the causal hierarchy [7] by optimizing the counterfactual mean of the outcome
with respect to the modified interventional distribution rather than the interven-
tional mean. Nevertheless, their emphasis on one-dimensional treatments frees
them from the computational complexities of the multi-dimensional interven-
tions discussed in this paper.

2 Problem Statement

Throughout this paper, we denote random variables and their assignments using
upper and lower case, respectively. Vectors are indicated in bold. The set of



4 M.C. Vonk et al.

random variables is denoted by X = {X1, . . . ,Xn}, where random variable Xi

takes values xi in corresponding state space ΩXi
. A graph is denoted by G =

(V ,E) with nodes V = {V1, . . . , Vn} and edges E ⊆ V ×V . The graph is called
directed when every edge in the graph has a direction, and it is called cyclic when
there exists a directed path from a node to itself. When the graph is directed
and not cyclic it is called a directed acyclic graph.

A Bayesian network (BN) represents random variables by the nodes of a di-
rected acyclic graph. The probabilistic dependencies of the random variables are
captured by the graph’s edges. Let P (x1, . . . , xn) be the joint probability distri-
bution of random variables Xi associated to nodes Vi ∈ V in the corresponding
directed acyclic graph G = (V ,E). The joint probability can be factorized ac-
cording to the structure of the Bayesian network [33]:

P (x1, . . . xn) =
n

∏
i=1

P (xi ∣ pai)

where pai represents the assignment of the random variables that correspond
to parents of Vi. When P (xi ∣ pai) is discrete, it can be expressed through a
conditional probability table (CPT) [44].

In the case of causal Bayesian networks, the edges in BNs convey a causal
meaning, and the do-operator can be used to model causal interventions. The
behavior of the do-operator within a causal BN leads to a truncated factorization
of the distribution [45]. Suppose XK ,XS ⊂X and XK ⋂XS = ∅. Then:

P (xS ∣ do(XK = xK)) = ∑
xi∣i∉K⋃S

∏
i∉K

P (xi ∣ pai). (1)

More efficiently, the do-operator can be implemented by means of an adjust-
ment set [41], that is, a set XJ ⊂X for which:

P (xS ∣ do(XK = xK)) =
⎧⎪⎪
⎨
⎪⎪⎩

P (xS ∣ xK) if XJ = ∅,

∑xJ
P (xS ∣ xK ,xJ)P (xJ) otherwise.

(2)

We focus on the Causal Global Optimization (CGO) problem [2] defined in
Equation 3. The variables in the Bayesian network X can be further dissected
into intervenable variables Z, context variables C, and outcome variable Y 1.
The goal is then to optimize the interventions among intervenable variables that
minimize the expected value of the outcome variable in the associated interven-
tional distribution:

X∗

K ,x∗K = argmin
XK⊂Z,xK∈ΩXK

E∥Y ∣ do(XK = xK))∥. (3)

1 In this case, we consider a one-dimensional outcome variable, although the proposed
methodology is generalizable to multiple outcome variables.
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3 Methodology

The highlighted methodology components in Figure 1, as discussed in this sec-
tion, include the discretization of the hybrid Bayesian network, inference using
the BDD encoding of this discretization, and the specifics of the optimization
algorithms. More detailed information about inferring the CPTs, CNF formulas,
and the BDD encodings can be found in [44].2

3.1 Discretization

The discretization process involves dividing the continuous state space of random
variable Xi, denoted as ΩXi

into distinct bins Bj ∶ j = 1, . . . ,m so that they form
a complete partition of ΩXi

. Each bin Bj is associated with the sample mean
of the data points contained within that bin, 1

∣Bj ∣
∑xi∈Bj

xi, where ∣Bj ∣ indicates

the number of data points xi contained within bin Bj .
Two types of discretization have been considered. The equal width (EW) dis-

cretization technique involves dividing the state spaces ΩXi
into bins of consis-

tent width. On the other hand, the equal frequency (EF) discretization method
separates the samples into quantiles. Because the EF showed better accuracy
performance in the context of BN inference [44], discretizations in this paper
involve this method. We infer the discretized conditional probability values with
a Bayesian method with empirical Bayes priors as described in [44] to prevent
positivity violations [45].

3.2 BDD Encoding and Inference

A binary decision diagram (BDD) [12] is a rooted directed acyclic graph which
typically represents a Boolean function f ∶ {0,1}n → {0,1}, although for our
purposes it is used to represent a pseudo-Boolean function f ∶ {0,1}n → R (i.e. a
discrete probability distribution). The two relevant properties of BDDs are their
ability to compactly represent many functions by identifying redundancies, and
their support for polynomial-time operations (e.g., computing marginal proba-
bilities) based on BDD size.

A Bayesian network is encoded in a BDD by first encoding each CPT entry
in a small Boolean expression. From these, a BDD can be built using primitive
BDD operations for logical and (∧), or (∨), not (¬), etc. Consider, for example,
the BN given in Figure 2a-2b. Boolean variables {a0, b0, b1} are introduced to
encode the values of A and B, while Boolean variables ωi are used to refer to
specific probabilities. For example, the CPT entry P (B = 2 ∣ A = 0) = 0.2 is
encoded as (¬a0 ∧ ¬b1 ∧ b0)⇒ ω2, where ¬a0 corresponds to A = 0 and ¬b1 ∧ b0
corresponds to B = 2dec = 10bin. A mapping val(⋅) from ωi’s to probabilities
(val(ω2) = 0.2 for this CPT entry) is stored separately.

Given a BDD that encodes a BN, computing marginal or conditional proba-
bilities reduces to so-called weighted model counting [13], in which different paths

2 The methodology is available on https://github.com/sebastiaanbrand/bn-dd.

https://github.com/sebastiaanbrand/bn-dd
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A B

(a) BN structure

P (A = 0) P (A = 1)

0.5 0.5

A P (B = 0 ∣ A) P (B = 1 ∣ A) P (B = 2 ∣ A)

0 0.33 0.33 0.33
1 0.1 0.1 0.8

(b) Conditional probability tables

a0

ω0 ω0

b0 b0

b1 b1

ω1 ω2 ω3

1

(c) BDD

ωi val(ωi)

ω0 0.5
ω1 0.33
ω2 0.1
ω3 0.8

(d) ωi values

Fig. 2: An example BN (a,b) and the corresponding BDD (c). The probabilities
corresponding to the Boolean variables ωi are stored separately (d). In the BDD
solid (dashed) edges correspond to positive (negative) assignments to variables.

through the decision diagram are traversed and probabilities are multiplied and
added along the way. During this traversal, every node in the BDD only needs
to be visited (at most) once, and thus, weighted model counting can be done in
time linear in the size of the BDD. In this paper, the do-operator has been imple-
mented through the adjustment formula (Equation 2) that utilizes the efficiently
computed marginal and conditional distribution. A more detailed description of
the encoding and the weighted model counting procedure can be found in [44].

3.3 Optimization

Given the above discretization and encoding mechanisms, interventional queries
can be computed and the CGO problem can be addressed heuristically. To illus-
trate this point, we select a variety of optimization algorithms from the black-

box optimization literature [6], implemented in the Nevergrad [35] platform. Our
set of algorithms includes: (a) RandomSearch as a baseline, (b) two evolution-
ary algorithms (Differential Evolution [39] (DE) and (1+1) Evolutionary Strat-
egy [10] (OnePlusOne)), (c) local search methods (BFGS [11,16,18,38] and Pow-
ell’s method [34]), (d) the algorithm wizard ’NGOpt39’ [28], which automatically
selects an optimizer based on problem characteristics such as the number of vari-
ables. To track the optimization performance, we use IOHexperimenter [30], a
benchmarking module from the IOHprofiler environment [42], which allows us
to fully track the optimization process.

For each optimization algorithm and each network, we perform 10 indepen-
dent runs of 2000 evaluations of the objective function each, where an evaluation
consists of calculating the expected value of the outcome variable given an inter-
vention set (see Equation 2), which is to be minimized in all networks considered
in this paper (see Equation 3). To represent the problem inside the optimization
algorithms, we note that each node we can intervene on takes a value between
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0 and the number of bins if it is intervened on; for convenience, we then use a
negative value if no intervention is performed on this node. Within the Never-
grad library, such a representation gets translated to a real-valued one to allow
continuous optimization algorithms to tackle this problem as well [35].

4 Experiments

This section details the experiments presented in the paper, considers their pol-
icy implications where relevant, and evaluates the performance of optimization
algorithms. The discretizations were selected to maximize bin count without
overfitting the sample data [44] or exceeding 64GB RAM during BDD compi-
lation. Figure 4 presents the optimization results and Table 1 summarizes the
Bayesian network features and discretizations.

Table 1: Characteristics of the used Bayesian networks.

Dataset Origin Samples Network Max Discretization Intervention
nodes edges parents3 bins variables

Toy [2] synthetic 1000 3 2 1 100 1
MC [17] synthetic 4000 12 15 6 30 7
Climate [26] real-world 293 8 11 3 20 3
Mehra [43] real-world 5000 24 71 9 4 8
Arth [32] real-world 5000 107 150 17 6 5

Toy This dataset [2] contains a three-node X → Z → Y Bayesian network dis-
cretized into 100 bins. While not interesting from an optimization perspective, it
benchmarks inference quality post-discretization, focusing on possibly-optimal
minimal intervention set [24] {Z}. Most optimization algorithms quickly con-
verge to the optimal solution in the discretization, Y = −1.866, which is near the
known exact solution Y = −1.856.

Mixed Confounding (MC) This synthetic dataset, depicted in Figure 3a,
is called mixed confounding as it contains many continuous as well as discrete
variables that causally influence more than one variable in the graph, as further
specified in Csuite benchmarking causal datasets [17]. After discretizing contin-
uous variables into 30 bins, we conducted two experiments on outcome variables
X10 and X11, both with the minimum intervention set [24] {X2, X3, X4, X5, X6,

X7, X8}. Figures 4a and 4b illustrate that both DE and NGOpt19 outperform
other optimization algorithms.

Climate The dataset comprises 294 samples, tapping into the interplay between
climate and conflict as depicted in Figure 3b. It includes conflict, climate, envi-
ronmental, and demographic data at the municipal level in southeastern Iraq. An

3 The maximum number of parents is a proxy for computational complexity.
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(b) Climate Causal BN

Fig. 3: Bayesian network structures corresponding to the mixed confounding and
climate experiments. The hybrid nodes are distinguished by interior line pat-
terns: dashed lines oriented from the top-left to bottom-right denote nodes with
continuous values, whereas those from the top-right to bottom-left signify nodes
with discrete values.

understanding of the variables and the details of the empirically verified causal
structure can be found in [26].

The outcome variable is the number of conflict fatalities. The interventions
in consideration are precipitation, rice production, and population density, al-
though direct intervention may be challenging. Indirect policy measures such as
water management and development projects can be targeted to increase water
availability and balance demographic distribution respectively.

Figure 4e shows that DE and NGOpt19 are the best-performing algorithms.
The tables in Figure 4f indicate best-found objective values and intervention
values compared to the sample means in the dataset. With interventions tailored
to increasing rice supply/production, equitable population management leading
to a more balanced demographic distribution, and increased precipitation or
related water management interventions, the expected value of conflict fatalities
can be reduced by 85.9% with respect to the mean.

Mehra This conditional linear Gaussian BN from bnlearn [37] explores the cor-
relation between air pollution and health outcomes [43]. Due to its considerable
size, the compilation of BDD is restricted to those segments of the network per-
tinent to the optimization task.4 The results can be seen in Figure 4c, where the
identified best-performing algorithm is Randomsearch closely followed by DE
and NGOpt39 (same applies to the dataset below).

4 Because of the nature of the do-operator and the adjustment formula of Equation 2,
nodes that are not marginalized or conditioned upon in the optimization step can
be eliminated from the compilation.
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Arth This enormous Gaussian BN from bnlearn, originating from the GeneNet
package, features plant expression data [32]. Like the Mehra dataset, the size
necessitates limiting the BDD compilation to only those parts of the network
that are essential for optimization. The results are available in Figure 4d.

(a) Mixed Confounding: Y =X10 (b) Mixed Confounding: Y =X11

(c) Mehra (d) Arth

(e) Climate

y
∗

ȳ

Conflict Fatalities 4.89 34.6

x
∗

x̄

Rice Production 36.9 13.0
Population Density 215 811

Precipitation 25.0 19.8

(f) Climate Dataset: Best-found solu-
tions

Fig. 4: The best-found expected value of the interventional distributions of 6
optimization algorithms over 2000 evaluations, averaged over 10 runs for the 4
considered datasets (a-e). For the climate dataset, the table in (f) corresponds to
found objective y∗ and intervention values x∗ compared to sample mean values
ȳ, x̄.
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Performace of Optimization Algorithms We observe that the more lo-
cal methods (BFGS, Powell, OnePlusOne) perform rather poorly. Only DE and
NGOpt are able to outperform the Randomsearch baseline, suggesting that the
underlying optimization problem might be multimodal. This might also be con-
nected to the choice of internal problem representation selected from Nevergrad,
as working directly on the discrete variables might be more suitable for these
local search methods. While this points to a need for further examination of the
specifics of the optimization procedure, the results nevertheless illustrate that
in general these problems contain sufficient structure that heuristic black-box
optimizers can improve over the performance of Randomsearch.

5 Conclusion

This paper proposes a methodology to solve the offline causal global optimiza-
tion problem for large hybrid causal Bayesian networks using only observational
data. The methodology consists of discretizing the hybrid Bayesian network and
encoding to binary decision diagrams. Once the BDD is compiled, query costs
become negligible, allowing the deployment of heuristic optimization algorithms
that optimize for the best intervention.

Our contribution is three-fold. First, we have extended the use of interven-
tional distributions to decision diagrams encoded from Bayesian networks in
cases without unobserved confounders. Second, the encoding enables cheap eval-
uations of interventional queries that allow us to compare and evaluate various
heuristic optimization algorithms aimed at optimizing causal interventions. Fi-
nally, we have demonstrated the practical utility of our methodology for decision-
makers through its application to an empirically based causal Bayesian network.

Since collecting interventional data can be costly, impractical, or unethical,
our research is limited to observational data only. Using strictly observational
data brings as a limitation that optimal interventions may lie beyond the current
observational domain of the variables.

We propose the following future research avenues: although some results sug-
gest that discretization does not necessarily lead to a loss of information, future
research could further specify for which data structure or distributions this is
the case or even include the loss of information due to discretization in the opti-
mization loop. The latter would lead to a multi-objective optimization problem.
Alternatively, the proposed methodology could be benchmarked against method-
ologies incorporating different known approximate inference methods, such as
sampling methods or variational inference [20].

As demonstrated, the encodings of Bayesian networks to decision diagrams
bring computational advantages that pave the way for the integration of opti-

mization within the field of causality.
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